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Abstract. The critical exponents of the effective nonlinear susceptibilities for two-component
weakly nonlinear composites near the percolation threshold are studied. We consider ad-
dimensional, two-component weakly nonlinear composite in which the volume fractionf

of the first component obeys a nonlinear current-density–field (J–E) relation of the form
J = σ1E + χ1|E|βE and the volume fractiong of the second component exhibits the linear
responseJ = σ2E. Two important limits are examined: (1) the normal-conductor–insulator
(N/I) mixture with σ2 = 0; (2) the superconductor–normal-conductor (S/N) mixture in which the
superconducting component has infinite conductivity,σ2 = ∞. As the percolation thresholdfc
or gc is approached, the effective responseχe is found to behave asχe ∼ (f −fc)u(β) in the N/I
limit and χe ∼ (gc − g)−v(β) in the S/N limit. On the basis of the relation between the effective
nonlinear susceptibility in random nonlinear composites and the resistance (or conductance)
fluctuations in the corresponding linear composites, we give explicit expressions foru(β) and
v(β) for arbitrary nonlinearityβ and dimensionalityd. Meanwhile we calculate numerically the
critical exponentsu(β) andv(β) as functions ofβ for different dimensions; anomalous critical
behaviour of the effective nonlinear susceptibility for a two-dimensional N/I system is found.

1. Introduction

The physics of weakly nonlinear composite media has attracted much interest in recent
years [1–4]. A typical system is that of a composite in which one component has a
nonlinear current-density–electric field (J–E) relation of the formJ = σ1E + χ |E|βE
(σ1� χ1|E|β) randomly mixed with another component with the linear responseJ = σ2E.
For such a system, the effective linear conductivityσe and the(β + 1)th-order nonlinear
susceptibilityχe(β) have been calculated [5–7], and a higher-order nonlinear response has
also been proposed [8, 9]. More recently, another problem worth noting has been identified:
that of the critical behaviour of the effective nonlinear susceptibility near the percolation
threshold. There are two important limits to be considered:

(i) the weakly nonlinear normal-conductor–insulator (N/I) mixture in which the
insulating component has no finite conductivity (σ2 = 0); and

(ii) the superconductor–weakly nonlinear normal-conductor (S/N) mixture in which the
superconducting component has infinite conductivity (σ2 = ∞).
For linear transport properties, it is known that the general theory of percolation [10] has
been extremely useful in describing the properties of a random mixture in the vicinity of
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the percolation threshold. Above (or below) the percolation threshold, a critical exponentt

(or s) has been applied to describe the vanishing (or divergence) of the linear conductivity
σe in the N/I (or S/N) system, i.e.,

σe ∼ (f − fc)t in the N/I limit (1)

or

σe ∼ (gc − g)−s in the S/N limit (2)

where fc and gc are the percolation thresholds of the first and second components,
respectively.

For nonlinear transport properties, following equations (1) and (2), it is natural to
define other exponents in order to consider the geometric effects on the nonlinear transport
properties in random composites; that is,

χe(β) ∼ (f − fc)u(β) in the N/I limit (3)

or

χe(β) ∼ (gc − g)−v(β) in the S/N limit (4)

whereu(β) andv(β) are the critical exponents of the effective nonlinear susceptibilityχe
and areβ-dependent in general. For the case whereβ = 2, these exponents have been
studied in references [11, 12] on the basis of the effective-medium approximation (EMA),
and in references [2, 12] on the basis of the relation to the noise exponentsk(2) (or k′(2))
which characterize the divergence of the relative resistance (or conductance) fluctuations
in linear random composites. The qualitative results obtained using the EMA for arbitrary
β have been reported [7, 13]. It is our aim here to determine the dependence of the
exponentsu(β) and v(β) on the nonlinear exponentβ by relating the nonlinear response
of the random composite problem to the resistance (or conductance) fluctuations of the
corresponding problem. Our study emphasizes two points. Firstly, we analyse the relation
between the sizeL of the composite system and the correlation lengthξ . Secondly, it is
necessary to give the critical exponentsv(β) for higher dimensions. We shall calculateu(β)
andv(β) as functions ofβ for different dimensions. The effective nonlinear susceptibility
χe for a two-dimensional N/I composite reveals anomalous critical behaviour.

2. Formalism

Let us consider ad-dimensional weakly nonlinear composite composed of two types of
component. One, with the volume fractionf , obeys a weakly nonlinear current-density–
electric field (J–E) response of the form

J = σ1E + χ1|E|βE (β > 0) (5)

where σ1, χ1 and β are the linear conductivity, nonlinear susceptibility and nonlinear
exponent respectively, and weak nonlinearity requiresχ1|E|β � σ1. The other component,
with the volume fractiong, has a linear characteristic relation of the formJ = σ2E. We
havef + g = 1. The effective response of the whole system can be defined in such a
way that we use the following space-averaged current-density–space-averaged electric field
(〈J〉–〈E〉) relation:

〈J〉 = σe〈E〉 + χe〈|E|β〉〈E〉 (6)
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whereσe andχe are the effective conductivity and nonlinear susceptibility, and are given
by

σeE
2
0 =

1

V

∫
v

σi |Ei |2lin dV (7)

χe(β)E
β+2
0 = 1

V

∫
v

χi |Ei |β+2
lin dV (8)

whereσi andχi are the linear conductivity and nonlinear susceptibility of theith component
while E0 and |Ei|lin stand for the applied field and the local electric field in theith
component within linear composites (i.e., obtained from the same system but withχi = 0),
respectively.

With equations (7) and (8), the effective nonlinear response ofσe andχe can be obtained.
However, here we will derive the expressions for the critical behaviouru(β) for a N/I
composite andv(β) for a S/N composite. In view of the similarity of the procedures
followed in the discussion of these systems, the derivations will be presented in parallel.

The relation between the problem of weakly third-order nonlinearity(β = 2) and that
of the resistance (or conductance) fluctuation has been formulated in reference [2]. It is
found that

χe(β = 2) ∼ Ld δσ 2
e (9)

whereδσ 2
e is the mean square fluctuation of the effective linear conductivityσe. The above

equation can be easily generalized to the effective nonlinear susceptibilityχe(β) for arbitrary
β [13, 14]:

χe(β) ∼ Ld δσ (β+2)/2
e (10)

where δσ (β+2)/2
e is defined as the higher-order cumulant. Consequently, the quantity

δσ
(β+2)/2
e /σ

(β+2)/2
e , which characterizes the ratio of the higher-order cumulant to the mean

[(β + 2)/2]th order of the effective linear conductivity, is expected to be [14]

〈δσ (β+2)/2
e 〉c
σ
(β+2)/2
e

∼ Ld(1−(β+2)/2)(f − fc)−κ((β+2)/2) with f > fc in the N/I limit (11)

〈δσ (β+2)/2
e 〉c
σ
(β+2)/2
e

∼ Ld(1−(β+2)/2)(gc − g)−κ ′((β+2)/2) with g < gc in the S/N limit (12)

where κ((β + 2)/2) and κ ′((β + 2)/2) denote the divergence of the high-order relative
fluctuation and can be reduced to the noise exponentsκ(2) andκ ′(2) for β = 2. Combining
equations (11), (12) and (10), we have

χe(β) ∼ L(2−β)d/2(f − fc)[{(β+2)/2}t−κ((β+2)/2)] in the N/I limit (13)

and

χe(β) ∼ L(2−β)d/2(gc − g)[−{(β+2)/2}s−κ ′((β+2)/2)] in the S/N limit . (14)

The above relations are correct forL > ξ , i.e., in the Euclidean regime; thus they
hold in the thermodynamic limit(L = ∞) and near the percolation thresholdfc (or gc).
Therefore, the critical exponentsu(β) andv(β), which describe the dependence onf − fc
(or gc − g) of the effective nonlinear susceptibilityχe(β) in the N/I (or the S/N) limit, are
given as follows:

u(β) = β + 2

2
t − κ

(
β + 2

2

)
(15)
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and

v(β) = β + 2

2
s + κ ′

(
β + 2

2

)
. (16)

Similar expressions foru(β) and v(β) have been obtained in [15]; whenβ = 2, equ-
ations (15) and (16) will be reduced to the well known resultsu(2) = 2t − κ(2) and
v(2) = 2s + κ ′(2), respectively [12].

Here we must emphasize that we are analysing the relation betweenL and the correlation
length ξ (ξ ∼ (f − fc)−ν or ξ ∼ (gc − g)−ν near the percolation threshold, andν is the
correlation length exponent). It is known thatL andξ are two different physical parameters.
In the vicinity of fc (or gc), ξ is a function off −fc (or gc−g), whileL is a fixed quantity
for a given system (in the thermodynamic limit,L is taken as∞) and is independent of
f − fc (or gc − g). Thus, these physical parameters depend not only onL but also on
f −fc (or gc−g); however, at the percolation threshold,ξ diverges and equations (13) and
(14) are not approached; the whole system is always in the fractal or self-similar regime. In
this case, these physical parameters will only depend onL and can be obtained by putting
f − fc ∼ ξ−1/ν = L−1/ν (or gc − g ∼ ξ−1/ν = L−1/ν), i.e., by replacingξ with L (not
L with ξ ). In short,L cannot be replaced byξ in any case, andL and ξ must not be
confused [13].

In order to investigate the properties of the critical exponentsu(β) andv(β), we must
look for expressions forκ((β + 2)/2) andκ ′((β + 2)/2).

For finiteL, in the fractal regime,L < ξ ; thusξ ≈ L, and equations (11) and (12) can
be written as

〈δσ (β+2)/2
e 〉c
σ
(β+2)/2
e

∼ L[d(1−(β+2)/2)+κ((β+2)/2)/ν] (17)

and

〈δσ (β+2)/2
e 〉c
σ
(β+2)/2
e

∼ L[d(1−(β+2)/2)+κ ′((β+2)/2)/ν] . (18)

On the other hand, the above two equations can also be expressed as [14]

〈δσ (β+2)/2
e 〉c
σ
(β+2)/2
e

= 〈δR
(β+2)/2〉c

R(β+2)/2
∼ L[ψR((β+2)/2)−((2+β)/2)ζR ]/ν (19)

and

〈δσ (β+2)/2
e 〉c
σ
(β+2)/2
e

= 〈δG
(β+2)/2〉c

G(β+2)/2
∼ L[ψG((β+2)/2)−((2+β)/2)ζG]/ν . (20)

In equations (19) and (20),ψR (G) characterizes the scaling of the [(β + 2)/2]th cum-
ulant of the global resistance (or conductance) distribution because of the local resistance
(or conductance) fluctuations, i.e.,〈δR(β+2)/2(G(β+2)/2)〉c ∼ L[ψR (G)((β+2)/2)]/ν [16], while
the average macroscopic resistanceR (or conductanceG) behaves asR ∼ L2−d/σe ∼
(f−fc)−tL2−d ∼ Lt/ν+2−d ∼ LζR/ν (orG ∼ σeLd−2 ∼ (gc−g)−sLd−2 ∼ Ls/ν+d−2 ∼ LζG/ν)
for L < ξ , whereζR = t − (d − 2)ν (or ζG = s + (d − 2)ν) [17].

Comparing equations (17) with (19) and equations (18) with (20), we can obtain the
relation betweenκ((β + 2)/2) (κ ′((β + 2)/2)) andψR((β + 2)/2) (ψG((β + 2)/2)):

κ

(
β + 2

2

)
= ψR

(
β + 2

2

)
+ β

2
dν − β + 2

2
ζR (21)
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and

κ ′
(
β + 2

2

)
= ψG

(
β + 2

2

)
+ β

2
dν − β + 2

2
ζG. (22)

Substituting equations (21) and (22) into equations (15) and (16), we have

u(β) = −ψR
(
β + 2

2

)
+ β + 2

2
(ζR + t)− β

2
dν (23)

and

v(β) = ψG
(
β + 2

2

)
+ β + 2

2
(s − ζG)+ β

2
dν. (24)

These results are new and different from those given in previous work [13].
Analytic and numerical results forψR((β + 2)/2) have been obtained for ad-

dimensional random resistor network in the vicinity of the percolation thresholdfc or gc
[16]. One of the approximate expressions is

φR

(
β + 2

2

)
= 1+ (νDB − 1)[1−(2+β)/2](ζR − 1)(β+2)/2 (25)

whereDB is the fractal dimensionality of the backbone [16, 17].
For d = 2, from duality considerations, it has been shown thatψR((β + 2)/2) for

a random resistor network coincides withψG((β + 2)/2) for a random superconducting
network [18]. Thus equation (24) can be used to discuss the critical behaviour in two-
dimensional S/N systems. The known parameters, such asν, DB , ζR (ζG) and t (s), for
different dimensions, will be used in the following quantitative calculation. Their values
are readily available in the literature and we refer the reader to [16].

Using a hierarchical model of the two-phase percolation structure near the percolation
threshold, Morozovsky and Snarskii [19] proposed simple expressions:

κ

(
β + 2

2

)
= [2ν(d − 1)− t ] β

2

and

κ ′
(
β + 2

2

)
= [2ν − s] β

2
.

Thus equations (15) and (16) can also be expressed simply as [15]

u(β) = t + β[t − ν(d − 1)] (26)

and

v(β) = s + νβ. (27)

Equations (26) and (27) are simple and can also be used to describe the critical behaviour
of the nonlinear response in the N/I or S/N system. More importantly, with equation (27),
we can easily get information aboutv(β) for larger-dimensional S/N systems.

Numerical results foru(β) in the N/I limit and v(β) in the S/N limit for different
dimensions are shown in figures 1 and 2, respectively.

For a N/I composite, our approximations give reasonable results ford > 2 (see figure
1(a)). At first, whether based on equations (23) and (26) or the EMA [7, 13],u(β) is
always positive. Thus ford > 2, asf is close to the percolation thresholdfc, from the
above,χe(β) vanishes for arbitraryβ. Such behaviour is similar to that of the effective
linear conductivityσe, as f → f +c for such N/I composites. Secondly, the larger the
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(a) (b)

Figure 1. (a) For a N/I composite, the critical exponentu(β) of the nonlinear susceptibility
χe(β) as a function of the nonlinear exponentβ for d = 3 andd = 6. The results come from
equation (23) (solid line), equation (26) (dashed line) and the EMA (dotted line). Note that
equations (23) and (26) predict same results ford = 6. (b) For a N/I composite, the critical
exponentu(β) of the effective nonlinear susceptibilityχe(β) for d = 2 is plotted versus the
nonlinear exponentβ. The key to the curves is the same as for (a).

nonlinearityβ, the bigger the critical exponentu(β). This corresponds to the fast vanishing
of χe(β) with the increase ofβ. Thirdly, u(β) appears to be an increasing function of
the dimensionalityd, which implies thatχe(β) vanishes quickly for largerd. We also
notice that equations (23) and (26) predict reasonable agreement ford = 3 and give the
same results ford = 6; therefore the representation is valid. It is known that the EMA
gives the crude estimateu(β) = v(β) = (β + 2)/2 [7, 13], which is independent ofd.
For comparison, the results obtained using the EMA (the dotted line) are also depicted in
figure 1; it is evident that the EMA gives the correct behaviour ofχe(β) qualitatively, but
predicts incorrect critical exponents near the percolation threshold [13].

For two-dimensional N/I systems, more complex critical behaviour is shown in figure
1(b). On the basis of equation (23), we find that there is a critical valueβc ≈ 2.53 at which
u(βc) has a maximum value. Thusχe vanishes quickly in the region 0< β < βc1 ≈ 2.53,
then vanishes slowly with the increase ofβ. Equation (26) cannot give such interesting
behaviour, but produces a monotonic decrease with the increase of the nonlinearity.

The critical behaviourv(β) of the nonlinear susceptibilityχe(β) in the S/N limit is
plotted as a function ofβ in figure 2(a). Both equation (24) and equation (27) predict
v(β) > 0 and, thus, divergence ofχe asg→ g−c . As β increases,χe also diverges quickly.
This means that the enhancement of the nonlinear susceptibility is greater for larger values
of the nonlinearityβ [7]. Because the expressions forψG((β + 2)/2) for larger dimensions
are unknown, previous work cannot be used for discussing the critical behaviour in the
larger-dimensional S/N case. Here we can only resort to equation (27) to analyse such a
situation. Theoretical results obtained by using equation (27) are shown in figure 2(b) for
the d = 3 andd = 6 cases.v(β) > 0 for arbitraryβ; thus asg → g−c , not only doesσe
diverge, but alsoχe diverges and it diverges faster for largerβ. From figure 2, we also
find, with the increase ofd, that v(β) diverges quickly. From a comparison to the EMA
results, we find that the EMA also gives a qualitative description.



Critical properties of nonlinear susceptibilities 9279

(a) (b)

Figure 2. (a) For a two-dimensional S/N composite, the critical exponentv(β) of the effective
nonlinear susceptibilityχe versusβ for d = 2. The key to the curves is the same as for
figure 1(a). (b) For a higher-dimensional S/N system,v(β) versusβ for d = 3 andd = 6. The
key to the curves is the same as for figure 1(a).

3. Conclusions

In the present work, we have analysed the relation betweenL and ξ in detail and thus
established thatL and ξ must not be confused. Furthermore, we have studied the critical
behaviour of arbitrary(β + 1)th-order nonlinear random composites for the N/I and S/N
limits by investigating the relationship between the effective nonlinear susceptibility in
random nonlinear composites and the resistance (or conductance) fluctuations in the corres-
ponding linear composites for arbitrary dimensions. The critical propertiesu(β) andv(β)
are important and necessary for the investigation of nonlinear susceptibilities with arbitrary
β. Our results are new and different from those given in previous work. Our conclusions
are as follows.

(1) The critical exponentu(β) for a three-dimensional N/I system is always positive
and takes on the form of a monotonically increasing function of the nonlinear exponentβ;
the largerβ, the faster the nonlinear susceptibilityχe(β) vanishes asf → f +c .

(2) The critical exponentv(β) for a two-dimensional S/N system is also positive and
shows a monotonic increase with the increase ofβ. Therefore,χe(β) diverges quickly as
β increases.

(3) u(β) for d = 2 in the N/I limit exhibits anomalous behaviour. On the basis of
equation (23), we predict that there exists a critical valueβc (≈2.52) which characterizes
the maximum ofu(β). This indicates that the effective nonlinear susceptibility in a N/I
system exhibits a different critical behaviour with the increase ofβ, while on the basis of
equation (26) we only obtain a monotonic decrease with the increase ofβ.

(4) u(β) in the six-dimensional N/I limit andv(β) in higher-dimensional(d = 3, 6)
S/N cases are always positive. They increase as the nonlinearity increases. Previous work
cannot describe them.

The theoretical results presented in this paper are of potential practical use, especially
for percolating S/N composites which have high conductivity and yet are highly nonlinear,
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and may be useful in extracting the critical behaviour from experimental data [20].
We mainly concentrate on the critical behaviour of the effective nonlinear properties; we

can take a further step and discuss the crossover effect, for which the linear and nonlinear
response become comparable. For realistic composites, the ratio of the conductivity of the
poor conductor to that of the good conductor(h ≡ σ1/σ2) may not be zero. Such composites
will also be worth studying, becauseh governs the crossover from fractal (h = 0) to
homogeneoush = 1 behaviour [15]. This problem will be resolved in the future.

Acknowledgment

This project was supported by the National Natural Science Foundation of China under
Grant No 19974042.

References

[1] Bergman D J and Stroud D 1992Solid State Physicsvol 46, ed H Ehrenreich and D Turnbull (New York:
Academic) p 147

[2] Stroud D and Hui P M 1988Phys. Rev.B 37 8719
[3] Stroud D and Wood V E 1989J. Opt. Soc. Am.B 6 778
[4] Gu G Q and Yu K W 1992Phys. Rev.B 46 4502
[5] Levy O and Bergman D J 1992Phys. Rev.B 46 7189
[6] Hui P M 1990J. Appl. Phys.68 3009

Hui P M 1993J. Appl. Phys.73 4072
[7] Hui P M and Chung K H 1996PhysicaA 231 408
[8] Wang J J and Li Z Y 1996Commun. Theor. Phys.25 35
[9] Zhang G M 1996Z. Phys.B 99 559

[10] Stauffer D and Aharony A 1992Introduction to Percolation Theory2nd edn (London: Taylor and Francis)
[11] Yu K W, Chu Y C and Chan E M Y1994Phys. Rev.B 50 7984
[12] Yu K W and Hui P M 1994Phys. Rev.B 50 13 327

Levy O and Bergman D J 1994Phys. Rev.B 50 3652
[13] Zhang G M 1996J. Phys.: Condens. Matter8 6933
[14] Blumenfeld R and Bergman D J 1991Phys. Rev.B 43 13 682
[15] Snarskii A A and Buda S I 1997PhysicaA 241 350
[16] Meir Y, Blumenfeld R, Aharony A and Brooks Harris A 1986Phys. Rev.B 34 3424

Blumenfeld R, Meir Y, Aharony A and Brooks Harris A 1987Phys. Rev.B 35 3524
[17] Wright D C, Bergman D J and Kantor Y 1986Phys. Rev.B 33 396
[18] de Arcangelis L, Render S and Coniglio A 1985Phys. Rev.B 31 4725
[19] Morozovsky A E and Snarskii A A 1992 Sov. Phys.–JETP75 366
[20] Lin J J 1992J. Phys. Soc. Japan61 393

Lin J J 1992J. Phys. Soc. Japan61 4125


